
ChatScript Debugging Manual
© Bruce Wilcox, gowilcox@gmail.com

Revision 12/31/13 cs3.81

You’ve written script. It doesn’t work. Now what? Now you need to debug it, fix it, and
recompile it. Debugging is mostly a matter of tracing what the system does and finding
out where it doesn’t do what you expected. Debugging mostly done by issuing
commands to the engine, as opposed to chatting.

If the system detects bugs during execution, they go into TMP/bugs.txt You can erase the
entire contents of the TMP directory any time you want to. But odds are this is not your
problem. Debugging generally requires use of some :xxxx commands. I don't always
remember them all, so at times I might simply say

:commands
to get a list of the commands and a rough description.

Before it goes wrong during execution

Before you chat with your chatbot and discover things don't work, there are a couple of
things to do first, to warn you of problems.

Compiling (:build)

Of course, you started with :build to compile your script. It wouldn't have passed a script
that was completely wrong, but it might have issued warnings. That's also not likely to be
your problem, but let's look at what it might have told you as a warning. The system will
warn you as it compiles and it will summarize its findings at the end of the compile. The
compilation messages occur on screen and in the log file.

The most significant warnings are a reference to an undefined set or an undefined ^reuse
label. E.g.,

*** Warning- missing set definition ~car_names
*** Warning- Missing cross-topic label ~allergy.JOHN for reuse

Those you should fix because clearly they are wrong, although the script will execute fine
everywhere but in those places.

*** Warning- flowglow is unknown as a word in pattern

Warnings about words in patterns that it doesn't recognize or it recognizes in lower case
but you used upper case may or may not matter. Neither of these is wrong, unless you
didn't intend it. Words it doesn't recognize arise either because you made a typo
(requiring you fix it) or simply because the word isn't in the dictionary. Words in upper

1

mailto:gowilcox@gmail.com

case are again words it knows as lower case, but you used it as upper case. Maybe right
or wrong.

Editing the main dictionary is not a task for the faint-hearted. But ChatScript maintains
secondary dictionaries in the TOPIC folder and those are easy to adjust. To alter them,
you can define concepts that add local dictionary entries. The names of important word
type bits are in src/dictionarySystem.h but the basics are NOUN, VERB, ADJECTIVE,
and ADVERB.

concept: ~morenoun NOUN (fludge flwoa boara)
A concept like the above, declared before use of those words, will define them into the
local dictionary as nouns and suppress the warning message. You can be more specific as
well with multiple flags like this:

concept: ~myverbs VERB VERB_INFINITIVE (spluat babata)
You can define concepts at level 0 and/or level 1 of the build, so you can put define new
words whenever you need to.

When build is complete, it will pick up where it left off with the user (his data files
unchanged). If you want to automatically clear the user and start afresh, use
:build xxx reset

After it goes wrong during execution

The most common issue is that ChatScript will munge with your input in various ways so
you don't submit what you think you are submitting. The substitutions files will change
words or phrases. Spell correction will change words. Proper name and number merging
will adjust words. And individual words of yours will be merged into single words if
WordNet lists them as a multiple-word (like “TV_star”) . So you really need to see what
your actual input ended up being before you can tell if your pattern was correct or not.
Thus the most common debug command is :prepare.

Most Useful Debug Commands

:prepare this is my sample input

This shows you how the system will tokenize a sentence and what concepts it matches.
It’s what the system does to prepare to match topics against your input. From that you
can deduce what patterns would match and what topics might be invoked.

If you give no arguments to prepare, it just turns on a prepare trace for all future inputs
which disables actually responding. Not usually what you want.

When I test my bots (assuming they pass verification), I chat with them until I get an
answer I don't like. I then ask it why it generated the answer it did.

:why

2

This specifies the rules that generated the actual output and what topics they came from. I
can often see, looking at the rule, why I wouldn't want it to match and go fix that rule.
That doesn't address why some rule I want to match failed, so for that I'll need typically
need tracing. So I enable some trace (being lazy I typically do :trace all or :trace
~topicname where the rule I'm interested in is in ~topicname) and then I say

:retry
:retry This is my new input

:retry tells the system to rerun the most recent input on the state of the system a moment
ago, and retry it. It should do exactly what it did before, but this time if you have turned
on tracing it will trace it. It performs this magic in stand-alone mode by copying the
user's topic file into the TMP directory before each volley, so it can back up one time if
needed. Because it operates from that tmp copy you can, if your log file is currently
messy, merely erase all the contents of the USER folder before executing the revert and
the log trace will only be from this input.

You can also put in different input using :retry. This is a fast way to try alternatives in a
context and see what the system would do.

:do stream – execute the stream specified as though a rule has matched input and has this
stream as its output section. E.g.,
:do pos(noun word plural) will output “words”.
:do $token |= #STRICT_CASING will augment the user variable.

Sometimes you need the system to set up a situation (typically pronoun resolution).
:do hello world
will tell the system to generate hello world as its output.

In all cases the system will literally pretend a dummy user input of “:do”, incrementing
the input count, and running the preprocess. Then, instead of running the main control
topic, it merely executes the stream you gave it as though that were from some rule
matched during main processing. The output generated is handled per normal and the
system then runs the postprocess. The results are saved in the user's topic file.

:topics This is my sample input
This will display the topics whose keywords match the input, the score the topic gets, and
the specific words that matched.

:say this is bot output
This will output whatever you wrote as though the chatbot said it. Useful for testing post-
processing code.

:silent

3

This toggles whether or not output is sent to the user. Useful when running regression
tests.

:diff file1 file2 optional-separator
Reports on lines that are different between the two files. Useful when running regression
tests. Often used with :silent and :log as well. The system normally compares the lines of
the two files, bypassing leading and trailing whitespace. If you provide an optional
separator character, it will only compare the lines up to but not including that character,
though it will display the full lines when they fail to match.

4

The Debugger

You can run an embedded debugger and step thru execution yourself, setting breakpoints,
displaying and modifying values, and see what goes wrong.

:debug what is your name

The above launches the debugger and specifies to debug the listed input. A special form
of the command

:debug :retry
combines debugging with the :retry command. The system's state is restored to before the
most recent input, that input is then used as the input for :debug.

The debugger will normally stop at the beginning of each of the three phases (preprocess,
main, postprocess)/ You may not have each of these defined to topics, in which case you
will see fewer phases debugged. You give commands, some of which eventually tell the
debugger to resume executing, perhaps displaying stuff, until it reaches a next pausing
place or completes.

Data put out by the system will be about topics (entering and exiting) and rules. The data
will be indented to show its nesting relationship to other data. When the system is
paused, awaiting commands, it will display a “?:” prompt. Many commands only require
a single letter. Some require an entire line of input followed by the enter key. You can get
a list of commands by typing h, which is the help command. Normally you continue
execution using one of the arrow keys.

Conceptually the debuggable items are topics, rules, and actions. Rules are all of the
gambits, responders, and rejoinders. Actions are the things you can do in the output
section of a rule.

You can choose to step over an item, in which case it will complete its execution and the
system moves on to the next item.

You can choose to step into an item. This will look at things that happen inside the item.
For a topic, the next item layer in are rules. For rules, the next item layer in are actions.
Some actions also have a next layer. Actions Respond() and Gambit() take you to a topic
item. Action Reuse(), Refine(), and Loop() take you to a subcollection of rules. If and
Loop have actions inside of them. The subcollections themselves are items.

You can choose to step out of an item. This means completing execution of everything
inside, and leaving the item, returning to the item that invoked this item and moving on to
the next. i.e., you have now completed stepping over the original item.

Sometimes step in, step over, and step out have the same effect. For example, if you are
at a rule that will not match, then stepping in does nothing and the rule is complete. It is
the same as step over. If that was the last rule of a topic, then the only place to go is to

5

leave the topic, so it becomes the same as step out. Similar behaviors can happen when
you try to step in on an action that does nothing special. The action merely completes,
which is the same as step over. And if it's the last action of a rule, then the rule is
complete and you have “stepped out”.

Right-arrow - “step over” - execute the current data item in its entirety. For a topic, this
means all rules of the topic and everything they call. The topic will complete. For a rule,
this means completing the rule and moving on to the next rule. For an action this means
performing whatever it requests, including doing an nested topic calls, etc.

Down-arrow - “step in” - execute the next lower level. If you are in a topic, the next level
down is a rule of the topic. For a rule, the next level down is its actions. For an action,
some of them can call topics or subcollections of rules.

Left-arrow - “run to completion” - run until finished. Any traces and breakpoints will be
obeyed.

Up-arrow - “step out” - “step out” means finish up all the work at this level and return
to the higher level. A topic finishes all its rules and exits. A rule finishes all its actions
and moves on to the next rule. An action finishes its sub-behaviors and moves on to the
next action. A subcollection like loop finishes the loop and moves on to the next rule.

h (help) – displays the list of commands.

x (exit) - stop debugging and complete processing the input. You might do this if you
were actually finished debugging. Or maybe you skimmed over the actual important area
of debugging and want to try again more carefully (in which case :debug :retry should be
your next command).

b xxx yyy ENTER (set breaks) – b followed by a list and then the enter key will set
breakpoints. An item in the list can be a topic name (topic breakpoint) or a rule tag or rule
label (rule breakpoint).

 l (list breaks) – this will print out the list of current breaks you have set.

g (optional breakpoint) – go until - this is like a “step out” command requiring ENTER at
the end, that will also stop if it reaches the named topic or rule (naming the break is
optional).

d xxx yyy ENTER (delete breaks) – d followed by a list and then the enter key will remove
those breakpoints.

m – “run til match” resume executing, displaying topic entry/exit, but stop at the next
matching rule. Leaping from matching rule to matching rule is the fast overview of what
happens, not seeing all the failed rules.

6

t (trace topics) – Toggle a flag to trace entry and exit of all topics.

r (trace rules) – Toggle a flag to trace entry into a rule.

The data lines:

 at ~topicname - displayed on entering a topic-related
 exit ~topicname result: OK responses: 0 – displayed on exiting a topic, showing return
status and current number of user outputs generated.
 - ~topicname.3.0 u: (….) … - displays a rule to be executed. The – means it fails to
match, a + means it would match and go process its output. The rule tag is displayed,
followed by rule type and some of the actual rule code. When you are single stepping
thru a topic, the rule is printed out before execution happens, so you can see what will or
will not match, before you tell it to proceed. This involves pre-trying the match, so if
your match actually had code that modified the world (most don't), things might go
differently when the rule actually executes. An instance of that would be a pattern based
on matching a value from the %random generator, which would change the value.

While you are paused in the debugger, you can execute many of the :commands,
particularly the :do command. This will allow you to inspect individual variable values,
and even change them. You can also execute arbitrary functions with :do, but understand
that some things you execute might change the data your pending execution will depend
upon. You can, for example, use the debugger to get to a certain spot, then turn on tracing
with :trace, then resume execution.

7

Other Debug Commands

:show

The :show choices are all toggles. Each call flips its state.

:show all toggles a system mode where it will not stop after it first finds an output. It
will find everything that matches and shows all the outputs. It just doesn't proceed to do
gambits. Since it is showing everything, it erases nothing. There is a system variable %all
you can query to see if the all mode is turned on if you want some of your script to be
unreactive when running all.

:show input displays the things you send back into the system using the ^input function.

:show mark is not something you are likely to use but it displays in the log the
propogation of marked items in your sentence. If you do :echo that stuff will also display
on your screen.

:show number displays the current input number at the front of the bot's output. It is
always shown in the log, but this shows it on-screen. I use this before running a large
regression test like :source REGRESS/bigregress.txt so I will know how far it has gotten
while it's running.

:show pos displays summary on the POS-tagging. Not useful for a user, but useful to me
in debugging the engine itself.

:show topic displays the current topic the bot is in, prefixed to its output.

:show topics displays all the topics whose keywords matched the input.

:show why this turns on :why for each volley so you always see the rule causing output
before seeing the output.

:log xxxx put the message you write directly into the log file. Useful for testers to send
comments back to scriptors in the moment of some issue arising.

:noreact toggles whether the system tries to respond to input.

:testtopic ~topic sentence

This will execute responder mode of the named topic on the sentence given, to see what
would happen. It forces focus on that topic, so no other topic could intervene. In addition
to showing you the output it generates, it shows you the values of all user variables it
changes.

:testpattern (…..) sentence

8

The system inputs the sentence and tests the pattern you provide against it. It tells you
whether it matched or failed.

:testpattern (it died) Do you know if it died?

Some patterns require variables to be set up certain ways. You can perform assignments
prior to the sentence.

:testpattern ($gender=male hit) $gender = male hit me

Typically you might use :testpattern to see if a subset of your pattern that fails works,
trying to identify what has gone wrong. The corresponding thing for testing output is :do.

:topicstats – walks all topics and computes how many rules of various kinds you have
(e.g., how big is your system). You can also just name a topic or use a wildcard like ~do*
to see all topics starting with ~do.

:skip n

The system will disable the next n gambits of the current topic, and tell you where you
will end up next. Thereafter your next simple input like “ok” will execute that gambit,
and the n previous will already have been used up.

:trace all:
:trace none

The ultimate debugging command dumps a trace of everything that happens during
execution onto screen and into the log file. After entering this, you type in your chat and
watch what happens (which also gets dumped into the current log file). Problem is, it’s
potentially a large trace. You really want to be more focused in your endeavor.

:trace ~education - this enables tracing for this topic and all the topics it calls. Call it
again to restore to normal.

:trace ^myfunction – this enables tracing for the function. Call it again to restore to
normal.

:trace !~education - this disables current tracing for this topic and all the topics it calls
when :trace all is running. Call it again to restore to normal.

:trace ~education.school – this traces all top-level rules in ~education that you named
school (and its rejoinders and anything it calls. Call it again to turn off the trace.

You can insert a trace command in the data of a table declaration, to trace a table being
built (the log file will be from the build in progress). E.g.,

table: ~capital (^base ^city)
_9 = join(^city , _ ^base)
^createfact(_9 member ~capital)

9

DATA:
:trace all
Utah Salt_lake_city
:trace none

You can insert a trace in the list of files to process for a build. From files1.txt
RAWDATA/simplecontrol.top # conversational control
:trace all
RAWDATA/simpletopic.top # things we can chat about
:trace none

And you can insert a trace in the list of commands of a topic file:
topic: foo […]
…..
:trace all

Tracing is also good in conjunction with some other commands that give you a restricted
view.

You can name tracing options by subtraction. E.g.,
:trace all – infer – pattern

When I'm doing a thorough trace, I usually do :trace all – query because I want to see
fact searches but only need the answers and not all the processing the query did.

Note, if you want tracing to start at startup, when you don't have control, login with a
botname of trace. E.g, at the login type:

john:trace
This will turn on all tracing.

Data Display Commands

The system is filled with data, some of which you might want to see from time to time.

:interesting

Show the interesting topics list.

:commands

Displays available commands and a brief statement of purpose.

:definition ^xxxx

Shows the code of the user-defined macro named.

10

:findwords word – given a word pattern, find all words in the dictionary that match that
pattern. The pattern starts with a normal word character, after which you can intermix the
wildcard * with other normal characters. For example, slo* finds slothful, slower,
sloshed. s*p*y finds supposedly, spendy, and surprizingly.

:functions

Show all ^functions defined by the system.

:macros

Show all ^macros defined by the user.

:memstats

Show memory use- number of words, number of facts, amount of text space used,
number of buffers allocated.

:variables {kind}

Rarely will the issue be that some variable of yours isn't correct. But you can show the
values of all user $variables and all system %variables. If you provide an argument,
“system” restricts it to system variables and “user” restricts it to user variables.

:who

Show name of current user and current bot.

:nonset type set – find what words of the given part of speech are not encompassed by
the named concept. This is a command to determine if some words are not covered by an
ontology tree, and not used by normal scripters. E.g., :nonset NOUN ~nounlist .

:word apple

Given a word, this displays the dictionary entry for it as well some data up it's hierarchy.
The word is case sensitive and if you want to check out a composite word, you need to
use underscores instead of blanks. So :word TV_star .

:userfacts

This prints out the current facts stored with the user.

:allfacts

11

This dumps a list of all the facts (including system facts) into the file TMP/facts.txt .

:facts meaning

This displays all facts for the given word or meaning. If you give a meaning (e.g., sky~1)
then only facts involving that specific meaning are displayed. You can also give a fact
like (subject verb object) and all facts containing that fact will be shown, but the fact can
not contain any facts itself, it must be all simple fields.

:up word

Shows the dictionary and concept hierarchy of things above the given word or concept.

:down word n

Shows the dictionary hierarchy below a word or, if the word is name of a concept, the
members of the concept. Since displaying down can subsume a lot of entries, you can
specify how many levels down to display (n). The default is 1.

:findwords pattern
This uses the pattern of characters and * to name words and phrases in the dictionary
matching it. E.g.
:findwords *_executive
 chief_executive
 railroad_executive
:findwords *f_exe*
 chief_executive
 chief_executive_officer
 Dancing_and_singing_are_my_idea_of_exercise.

:overlap set1 set2
This tests atomic members of set1 to see if they are also in set2, printing out the ones that
are in both.

System Control Commands

:build

This compiles script into ready-to-use data in the TOPICS folder. You name a file to
build. If the file name has a 0 at the end of it, it will build as level 0. Any other file name
will build as level 1. You can build levels in any order or just update a single level.

A build file is named filesxxx.txt where the xxx part is what you specify to the build
command. So :build angela0 will use filesAngela0.txt to build level 0. A build file has
as its content a list of file paths to read as the script source data. It may also have

12

comment lines starting with # . These paths are usually relative to the top level directory.
E.g,

ontology data
RAWDATA/ONTOLOGY/adverbhierarchy.top
RAWDATA/ONTOLOGY/adjectivehierarchy.top
RAWDATA/ONTOLOGY/prepositionhierarchy.top

Depending on what you put into it, a build file may build a single bot or lots of bots or a
common set of data or whatever.

:bot sue

Change focus to conversing with the named bot (presuming you have such a bot).

:reset

Flush the current user's total history (erases the USER/ topic file), starting conversation
from the beginning.

:user username

Change your login id. It will then prompt you for new input as that user and proceed from
there, not starting a new conversation but merely continuing a prior one.

:source REGRESS/bigregress.txt

Switch the system to reading input from the named file. Good for regression testing.
The system normally prints out just the output, while the log file contains both the input
and the output. You can say :source filename echo to have input echoed to the console.
If you say :source filename internal the system will echo the input, then echo the
tokenized sentences it handled.

:pos

This is a subset of :prepare that just runs the POS-tagger parser on the input you supply. I
use it to debug the system. It either is given a sentence or toggles a mode if not (just
like :prepare). It also displays pronoun data gathered from the input.

:testpos

This switches input to the named file (if not named defaults to REGRESS/posttest.txt)
and running regression POS testing. If the result of processing an input deviates from that
listed in the test file, the system presents this as an error.

:verifysubstitutes

13

This tests each substitution in the LIVEDATA/substitutes file to see if it does the
expected thing.

:verifyspell

This tests each spelling in the LIVEDATA/spellfix file to see if it does the expected
thing.

:verifypos

This tests pos regression data in REGRESS to see if it does the expected thing.

:restart ?

This will force the system to reload all its data files from disk (dictionary, topic data, live
data) and then ask for your login. It's like starting the system from scratch, but it never
stops execution. Good for revising a live server. You can optionally name a language to
restart under, allowing you to switch dictionary bases.

:autoreply why
:autoreply ok

These commands cause the system to talk to itself. As the user it always says why or OK.
Not something you are likely to use.

Debugging Function ^debug()

As a last ditch, you can add this function call into a pattern or the output and it will call
DebugCode in functionExecute.cpp so you know exactly where you are and can use a
debugger to follow code thereafter if you can debug c code.

Logging Function ^Log(...)

This allows you to print something directly to the users log file. You can actually append
to any file by putting at the front of your output the word FILE in capital letters followed
by the name of the file. E.g.,

^log(FILE TMP/mylog.txt This is my log output.)
Logging appends to the file. If you want to clear it first, issue a log command like this:

^log(FILE TMP/mylog.txt new)
The “new” tells it to initialize the file to empty.

Login after crash
If you want to repeat a crash and not go thru all the trouble to recreate the situation you
can do the login differently. The old status of the system is still in the user's folder.
Normally when you login, it picks that up, but begins a new conversation. To resume the
old conversation as though you had never left, login with loginname:& . If before you

14

were user bruce, login as bruce:& . Now if you say what you said before, it should crash
just the same. Not that that will do most of you any good, but it's handy if you can debug
src code.

When all else fails

Usually you can email me for advice and solutions.

15

